APPENDIX A3.2
 FLOW COMPUTATION METHODS USED TO CALCULATE EAA BASIN FLOWS

Table of Contents

GATED SPILLWAYS

Parameters
Uncontrolled Free Flow
Uncontrolled Submerged Flow
Controlled Free Flow
Controlled Submerged Flow
Over-the-top Flow
PUMPS
Parameters
Pump Flow
Constant-speed Pump
Variable-speed Pump
Variable-speed Pump with Very Variable Head
Siphon Flow
CULVERTS
Parameters

GATED SPILLWAYS

Parameters

$\mathrm{C}_{\mathrm{cf}}=$ discharge coefficient for controlled free flow
Ccs = discharge coefficient for controlled submerged flow
Cot = discharge coefficient for over-the-top flow
Cuf = discharge coefficient for uncontrolled free flow
Cus = discharge coefficient for uncontrolled submerged flow
Go = gate opening, in feet
g $\quad=\quad$ acceleration due to gravity, $32.2 \mathrm{ft} / \mathrm{sec}^{2}$
$\mathrm{H}=$ approach head over the spillway sill, which is the difference between the upstream stage and the sill elevation, in feet
$\mathrm{Hg}_{\mathrm{g}} \quad=\quad$ approach head over the gate, in feet
$\mathrm{h}=$ submergence head over the spillway sill, which is the difference between the downstream stage and the sill elevation, in feet
$\mathrm{L} \quad=\quad$ length of spillway sill perpendicular to flow, in feet
$\mathrm{n}_{1} \quad=\quad$ exponent of approach head
$\mathrm{n}_{2} \quad=\quad$ exponent of submergence head
$\mathrm{n}_{3}=\quad$ exponent of total head
$\mathrm{n}_{4} \quad=\quad$ exponent of gate opening
$\mathrm{W} \quad=\quad$ width of gate, in feet

Uncontrolled Free Flow
$Q=C_{u f} L H^{n_{1}}$

Spillway
S-5AS
S-7
S-8
S-351
S-352
S-354
G-371
G-373

Uncontrolled Submerged Flow

$$
Q=C_{u s} L h^{n_{2}}(H-h)^{n_{3}} \sqrt{2 g}
$$

Spillway
S-5AS
S-7
S-8
S-351
S-352
S-354
G-371
G-373

Controlled Free Flow
$Q=C_{c f} L G_{o} \sqrt{2 g\left(H-0.5 G_{o}\right)}$

Spillway
S-5AS
S-7
S-8
S-351
S-352
S-354
G-371
G-373

Controlled Submerged Flow
$Q=C_{c s} L G_{o}^{n_{4}} h^{n_{2}} \sqrt{2 g(H-h)}$

Spillway
S-5AS
S-7
S-8
S-351
S-352
S-354
G-371
G-373

Over-the-top Flow

$$
Q=C_{o t} W H_{g}^{1.5} \sqrt{2 g}
$$

Spillway
S-5AS
S-7
S-8
S-351
S-352
S-354

PUMPS

Parameters

C	$=$	coefficient of discharge for siphon
$\mathrm{C}_{0}-\mathrm{C}_{9}$	$=$	coefficients of pump rating equation
H	=	head, downstream stage minus upstream stage, in feet
Hfact	=	normalizing head factor, in feet
H_{hi}	=	head from affinity laws corresponding to the high rpm rating equation, in feet
Hıo	$=$	head from affinity laws corresponding to the low rpm rating equation, in feet
N	$=$	engine speed, in rpm
$\mathrm{N}_{\text {fact }}$	=	normalizing engine speed factor, in rpm
$\mathrm{N}_{\text {hi }}$	=	engine speed of high rating equation, in rpm
$\mathrm{N}_{\text {lo }}$	$=$	engine speed of low rating equation, in rpm
$\mathrm{N}_{\text {min }}$	=	minimum engine speed below which no discharge is possible, in rpm
n	=	exponent of head for siphon
X	=	normalized head parameter
Y	=	normalized engine speed parameter

Pump Flow

Constant-speed Pump
A single-variable polynomial is used.

$$
Q=C_{0}+C_{1} H+C_{2} H^{2}+C_{3} H^{3}
$$

Pump
G-200A
G-200B
G-349B
G-350B

Variable-speed Pump

Interpolation of single-variable polynomials is performed. The pump affinity laws are used to obtain the adjusted head, H_{lo} :
$H_{l o}=H\left(\frac{N_{l o}}{N}\right)^{2}$
The adjusted head H_{lo} is used to compute Qlo.
$Q_{l o}=C_{0}+C_{1} H_{l o}+C_{2} H_{l o}^{2}+C_{3} H_{l o}^{3}$

Pump
S-5A
S-6
S-7
S-8
G-404
G-410
EBPS
ESPS
G-507
G-370
G-372
SSDD
SFCD
G-434
G-435
C-10
C-12A
C-12
C-4A
S236
EPD07

The adjusted head, H_{hi} is:

$$
H_{h i}=H\left(\frac{N_{h i}}{N}\right)^{2}
$$

The adjusted head H_{hi} is used to compute Q_{h}.

$$
Q_{h i}=C_{0}+C_{1} H_{h i}+C_{2} H_{h i}^{2}+C_{3} H_{h i}^{3}
$$

The affinity laws are used to obtain the discharge Q at engine speed N :
$Q=Q_{l o}+\left(Q_{h i}-Q_{l o}\right)\left(\frac{N-N_{l o}}{N_{h i}-N_{l o}}\right)$
Variable-speed Pump with Very Variable Head
A two-variable polynomial used. The normalized head and engine speed are:
$X=\frac{H}{H_{\text {fact }}}$
$Y=\frac{N-N_{\text {min }}}{N_{\text {fact }}}$

Pump
S-2
S-3

The pump discharge is:

$$
Q=C_{0}+C_{1} X+C_{2} Y+C_{3} X^{2}+C_{4} X Y+C_{5} Y^{2}+C_{6} X^{3}+C_{7} Y X^{2}+C_{8} X Y^{2}+C_{9} Y^{3}
$$

Siphon Flow
The siphon discharge is:
$Q=C H^{n}$

Siphon
S-6

CULVERTS

Refer to:

Fan, A. (October 1985). A General Program to Compute Flow through Gated Culverts (Technical Memorandum). West Palm Beach: South Florida Water Management District, West Palm Beach.

Parameters

The parameter defined here correspond to the variables defined by A. Fan.

Barrel $=$	barrel shaped coding, "0" = circular, " 1 " = box
C	orifice flow coefficient due to inlet shape
Cw	weir flow coefficient (flashboard)
D	diameter of pipe culvert or height of box culvert, in feet
Gh	height of gate, in feet
Gtype	gate type coding, " 0 " = circular, " 1 " = rectangular, " 2 " = weir
Gw	width of gate, in feet
$\mathrm{IN}_{\mathrm{el}}$	inlet invert elevation, in feet m.s.l. or NGVD
K	entrance loss coefficient due to shape of gate edge
L	length of culvert, in feet
N	number of barrels
n =	Manning's roughness coefficient
$\mathrm{OUT}_{\text {el }}=$	outlet invert elevation, in feet m.s.l or NGVD
r =	refernece elevation for flashboard elevation, in feet m.s.l. or NGVD
S_{wb}	total side weir length (riser or wing wall), in feet
$\mathrm{S}_{\text {we }}$	side weir crest elevation (riser or wing wall), in feet
W	width of box culvert
W_{b}	weir length (flashboad)

Culverts	Culverts
G-136	G-402A
G-88	G-402B
S-150	G-402C
S-5AE	G-402D
G-357	G-204
G-205	G-206
G-376A	G-376D
G-379A	G-379D
G-381A	G-381C
G-722	

